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Abstract

Previous studies indicate the generalized Pareto distribution (GPD) as a suitable dis-
tribution function to reliably describe the exceedances of daily rainfall records above a
proper optimum threshold, which should be selected as small as possible to retain the
largest sample while assuring an acceptable fitting. Such an optimum threshold may5

differ from site to site, affecting consequently not only the GPD scale parameter, but
also the probability of threshold exceedance.

Thus a first objective of this paper is to derive some expressions to parameterize
a simple threshold-invariant three-parameter distribution function which is able to de-
scribe zero and non zero values of rainfall time series by assuring a perfect overlapping10

with the GPD fitted on the exceedances of any threshold larger than the optimum one.
Since the proposed distribution does not depend on the local thresholds adopted for
fitting the GPD, it will only reflect the on-site climatic signature and thus appears par-
ticularly suitable for hydrological applications and regional analyses.

A second objective is to develop and test the Multiple Threshold Method (MTM) to15

infer the parameters of interest on the exceedances of a wide range of thresholds using
again the concept of parameters threshold-invariance. We show the ability of the MTM
in fitting historical daily rainfall time series recorded with different resolutions. Finally,
we prove the supremacy of the MTM fit against the standard single threshold fit, often
adopted for partial duration series, by evaluating and comparing the performances on20

Monte Carlo samples drawn by GPDs with different shape and scale parameters and
different discretizations.

1 Introduction

Several rainfall modeling approaches for hydrological applications use a simple rep-
resentation of the rainfall process and assume that the marginal distribution of rainy25

and not rainy values x at daily or any other fixed time scale can be described by the
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following Cumulative Distribution Function (CDF):

F (x)=Pr{X ≤x|X ≥0}= (1−ζ0)+ζ0F0(x) x≥0 (1)

where ζ0=Pr{X>0|X≥0} represents the probability of occurrence of rainy days, while
F0(x)=Pr{X≤x|X>0} is the CDF of only rainy values.

Equation (1) has some advantages, but it also presents some potential problems that5

must be taken into account and properly managed. A great advantage obviously relies
in the simplicity of this representation that allows easily simulating rainfall time series by
reproducing separately the binary process of rainfall occurrences (i.e the succession
of wet and dry periods) on one hand, and the distribution of rainfall values in rainy days
on the other hand. E.g. this is the working mode of simple weather simulators in which10

the temporal sequence of wet/dry days is often modeled by Markov chains, while the
distribution F0(x) is fitted on all strictly positive rainfall records and then used to fill in
the records of rainy days in the Markov chain.

Nevertheless, despite the simple form of Eq. (1) would suggest to fit F0(x) on all
strictly positive rainy observations, a particular care should be taken in this (seemingly15

very simple) approach. Indeed, the distribution of very small values may be not clearly
definite and may depart from the distribution of the bulk of higher records for several
reasons, including: (i) small values may be due to dew processes rather than being
the result of true rainfall events; (ii) measurements of very small rainfall values may
be seriously affected by local atmospheric interactions (e.g. evaporation and wind); (iii)20

small rainfall amounts manually collected by non-recording rain gauges may be some-
times classified as rainy or non-rainy records depending on the subjective judgment of
the person in charge of observation. Moreover, whatever the cause may be, there are
empirical evidences that small values often depart from the distribution of the bulk of
rainfall observations. Thus, whatever distribution F0(x) is candidate to describe daily25

rainfall records, a golden rule should be to infer parameter values only on records ex-
ceeding a proper optimum threshold, in order to be confident that all the censored
values likely belong to the same and unique distribution.
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We want also to highlight that fitting a distribution function Fu(x)=Pr{X≤x|X>u} on
the records above a given threshold u leads in general to parameters estimates that
differ from those of F0(x), even if F0(x) and Fu(x) belong to the same family. For prac-
tical applications it is thus particularly useful to derive relationships to parameterize
Eq. (1) with threshold-invariant parameters by assuring a perfect overlapping with the5

distribution Fu(x) for any x>u, regardless the value of the threshold u.
The first objective of our work is thus the derivation of such relations. Although

some developments presented in this paper hold for any distribution function Fu(x), we
specifically focus on the generalized Pareto distribution (GPD) (Pickands, 1975) for the
following reasons.10

First, under certain conditions, the GPD family has important connections with the
generalized extreme value distribution (GEV) family (e.g. the shape parameter is ex-
pected to be the same, while the other parameters are linked by theoretical relations),
thus fitting GPD can give us a more accurate insight into the maxima. Referring the
reader to Gumbel (1958), Castillo (1988), and Coles (2001) for a review of the GEV15

and GPD properties and derivations, we just remind that if there exist a limiting dis-
tribution of the block-maxima extracted from our samples (usually yearly maxima in
Earth sciences), this distribution belongs to the domain of attraction of the GEV fa-
mily (Fisher and Tippett, 1928; Gnedenko, 1943). In addition, under these conditions,
the Balkema – De Haan – Pickands theorem (Balkema and de Haan, 1974; Pickands,20

1975) states that the limit distribution of scaled excesses over high enough thresholds
has a corresponding approximate distribution within the GPD family. For hydrologi-
cal extreme events modeling, Madsen et al. (1997a,b) generalized previous findings
by Cunnane (1973) and showed that fitting a GPD on a reasonable number of ex-
ceedances of a proper threshold leads to more accurate extreme quantile estimates25

than fitting a GEV on annual maxima. We remark also that it would be desiderable to
select as low an optimum threshold as possible in order to minimize the estimation vari-
ance when fitting the GPD on observed samples (Coles, 2001). With this aim, graphi-
cal and numerical methods have been proposed and applied by several authors (e.g.,
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Davison and Smith, 1990; Smith, 1994; Lang et al., 1999; Dupuis, 1999; Choulakian
and Stephens, 2001; Guillou and Hall, 2001; Peng and Qi, 2004), but which can be
assumed as an optimal threshold for rainfall observations is still an open question with-
out a definitive answer. Moreover, the presence of rounded-off records makes this task
even more difficult (Deidda and Puliga, 2006).5

A second reason for the adoption of the GPD is that its mathematical form leads
to very simple equations for parameterization of Eq. (1) using results of inference on
records censored with any threshold. Indeed, for thresholds larger than the optimum
one the shape parameter of the GPD is expected to be constant, while the scale pa-
rameter should linearly depend on the threshold value. Thus simple linear equations10

for reparameterization of the scale parameter have been proposed (see e.g., Madsen
et al., 1997b; Coles, 2001). Begueŕıa (2005) analyzed several daily time series in Spain
and used these expressions to estimate the scale parameters corresponding to the on-
site optimum thresholds by averaging the reparameterized scale values obtained for
a range of thresholds. Nevertheless, a drawback of this approach is that the final scale15

parameter estimates depend not only on the local climatic conditions but also on the
on-site optimum threshold. In this paper we generalize these concepts in order to elim-
inate the dependence of the scale parameter on the threshold and we also provide
a threshold-invariant parameterization for the ζ0 parameter. Specifically, we rewrite
Eq. (1) using only three parameters to describe the rainy and not rainy records, re-20

gardless the thresholds adopted to fit the GPD on the exceedances. In such a way
Eq. (1) become independent on the threshold with undoubted advantages for practical
applications and regional analyses.

As the last but not least reason, there are many published evidences of the good ca-
pability of the GPD in describing rainfall exceedances (see e.g., Cameron et al., 2000;25

Coles et al., 2003; De Michele and Salvadori, 2005; Fitzgerald, 1989; Madsen et al.,
2002; Salvadori and De Michele, 2001; Van Montfort and Witter, 1986). Moreover, re-
cent studies by Begueŕıa (2005), Deidda and Puliga (2006), and Begueŕıa et al. (2009)
gave evidence, using L-moment ratio diagram (Hosking, 1990), that GPD is the best
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candidate to be the parent distribution of daily rainfall time series.
The second objective of this paper is to propose and test the Multiple Threshold

Method (MTM) which is based on the threshold-invariant GPD parameterization of
Eq. (1) and provides a fitting to Eq. (1) on the excesses above a proper range of thresh-
olds. Although the motivation for the development of the MTM comes from the need to5

improve the fitting on irregularly discretized records, as it is often the case for manually
collected rainfall measurements, we show that its performances are anyway superior
to standard single-threshold fitting on regularly discretized data. The need of such
technique is motivated by the discretization usually adopted for rainfall records, which
can be the quite standard resolution of 0.2 mm for tipping-bucket rain gauges in Europe10

(or 0.254 mm in the US), but can become also higher for records manually collected
by non-recording rain gauges. E.g., Deidda (2007) highlighted that many time series
collected by the Sardinian Hydrological Survey (Italy) contain anomalous quantities of
daily rainfall records rounded off at unexpected resolutions of 0.5, 1 and 5 mm/d. Re-
cently, Deidda and Puliga (2009) evaluated and compared the performances of several15

estimators of the GPD parameters on discretized samples. Specifically they considered
some widely used estimators such as those based on maximum likelihood, simple mo-
ments and probability weighted moments (Hosking and Wallis, 1987), as well as other
recently proposed GPD estimators such as those based on the maximum penalized
likelihood (Coles and Dixon, 1999), the minimum density power divergence (Juárez20

and Schucany, 2004), the likelihood moment estimator (Zhang, 2007), the median es-
timator (Peng and Welsh, 2001). Nevertheless, Deidda and Puliga (2009) concluded
that none of the considered methods provides acceptable estimates when records are
discretized at resolution 1 mm or larger. Indeed bias and root mean square errors of
parameter estimates are often of the same magnitude as the site-to-site variability of25

the parameter values to be estimated. In this paper we show, using observed as well
as synthetic time series, how the Multiple Threshold Method is able to overcome these
fitting problems even on roughly rounded-off records.
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The paper is organized as follows. Section 2 briefly describes the database. In
Sect. 3 we derive some relations between Eq. (1) and distribution functions fitted on the
exceedances above any threshold, then we provide specific equations to reparameter-
ize the GPD and finally rewrite Eq. (1) with only three threshold-invariant parameters.
In Sect. 4 we introduce the MTM and present some examples of application on daily5

rainfall time series. In Sect. 5 the performances of the MTM are evaluated on Monte
Carlo samples drawn by GPD, while Sect. 6 is devoted to the conclusions.

2 Database

Some of the analyses and figures presented in the following sections were performed
on daily rainfall time series collected by the Sardinian Hydrological Survey (Italy) from10

1922 to 1996: specifically, we used 217 time series with more than 40 complete years
of records. Most of the series were collected by non-recording standard rain gauges
and discretized with resolutions up to 1 and 5 mm (Deidda, 2007), while only a subset
was obtained by tipping-bucket rain gauges and was correctly discretized at 0.2 mm.
Time series are used with a twofold objective: to show the MTM working on historical15

records and to select representative GPD parameters for evaluation of MTM perfor-
mances on synthetic samples.

3 Some basic relationships

We derive here some general relationships among the marginal distribution F (x) in
Eq. (1) and distribution functions Fu(x) of the exceedances of any threshold u≥020

(Sect. 3.1). Results are then applied to parameterize Eq. (1) using GPD parameter
estimates on left-censored records in order to obtain a three-parameter distribution
which describes rainy and not rainy values (Sect. 3.2).
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3.1 Some relations among uncensored and left-censored distribution functions

We want first to derive some relationships among F (x) = Pr{X≤x|X≥0}, F0(x) =
Pr{X≤x|X>0}, and Fu(x) = Pr{X≤x|X>u}, in order to obtain a perfect overlapping
among these Cumulative Distribution Functions (CDFs) for any x>u as sketched in
Fig. 1.5

Using simple arguments of probability we can write Fu(x) = 1−Pr{X>x|X>u} =

1−
Pr{X>x|X≥0}
Pr{X>u|X≥0}

= 1−
1−F (x)

1−F (u)
. These equalities lead to the following relationship be-

tween F (x) and Fu(x) for any x>u:

F (x)= (1−ζu)+ζuFu(x) x >u (2)

where ζu=Pr{X>u|X≥0}=1−F (u) represents the survival function (i.e. the probabil-10

ity to observe excesses of u), while Fu(x) is the CDF of x>u only. Nevertheless,
since Fu(u)=limx→u+Fu(x)=0, Eq. (2) becomes valid for any x≥u and thus includes
also Eq. (1) as a special case for u=0.

Using similar arguments we can write Fu(x)=1−
Pr{X>x|X>0}
Pr{X>u|X>0}

=1−
1−F0(x)

1−F0(u)
to obtain

a relationship between F0(x) and Fu(x):15

F0(x)= F0(u)+
[
1−F0(u)

]
Fu(x) x≥u (3)

Finally, computing Eqs. (1) and (2) for x=u, eliminating F (u) among the equations, and
putting Fu(u)=0 we obtain:

ζu = ζ0
[
1−F0(u)

]
(4)

We highlight that all the above equations hold for any distribution function Fu(x) adopted20

to fit the exceedances above a threshold u. The same equations can be derived by the
following proportions in Fig. 1:

1−F (x)

1−F (u)
=

1−F0(x)

1−F0(u)
=

1−Fu(x)

1−Fu(u)
(5)

4964

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/7/4957/2010/hessd-7-4957-2010-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/7/4957/2010/hessd-7-4957-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
7, 4957–4994, 2010

A multiple threshold
method for fitting the

generalized Pareto
distribution

R. Deidda

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

3.2 GPD reparameterization

Now let us assume that for a given threshold u the exceedances of our sample could
be reliably described by a generalized Pareto distribution (GPD):

Fu(x)= Fu(x;αu,ξ)=


1−

(
1+ξ

x−u
αu

)−1/ξ

ξ 6=0

1−exp
(
−x−u

αu

)
ξ=0

(6)

where ξ is the shape parameter, αu the scale parameter, while u is the threshold value.5

The ξ parameter controls the tail behavior of the distribution and the attitude to origi-
nate heavy extremes. For ξ=0 the distribution has the ordinary exponential form. For
ξ>0 the distribution has a long right tail, thus it is often referred to as “heavy tailed
distribution”: in this case it is worth noticing that simple moments of order greater than
or equal to 1/ξ are degenerate, thus estimators based on ordinary moments can be10

applied to fit Eq. (6) only for ξ�1/2 to prevent degeneration of the first two moments
and consequent parameter estimation biases (Hosking and Wallis, 1987). For ξ<0 the
distribution is short tailed with an upper bound value

(
u−αu/ξ

)
. For a given ξ, the scale

parameter αu controls the mean of the exceedances above the threshold u. Finally, the
threshold u cannot be considered a true distribution parameter: indeed, the value of u15

must be specified (and used for left-censoring the sample) before fitting Eq. (6) since
the GPD is a distribution of threshold excesses.

Several methods have been proposed in the literature to infer the shape ξ and the
scale αu parameters of the GPD once the threshold u has been set. Concerning the
probability ζu to observe an exceedance of the threshold u, since the number of ex-20

ceedances follows a binomial distribution, the same following estimator can be derived
by the maximum likelihood, the simple moments, and the probability weighted moments
methods:

ζu =
Nu

N
(7)
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where Nu is the number of records above the threshold u and N is the sample size
(including the zeros).

The generalized Pareto distribution has an important property. If a sample can be
reasonably considered drawn by a GPD with threshold u∗ and shape parameter ξ,
then the excesses of any other threshold u>u∗ should also follow a GPD with the5

same shape parameter ξ and a scale parameter αu which will linearly change with the
threshold u.

Now, let us assume that GPD in Eq. (6) is a reasonable model for the exceedances
of a given threshold u and that parameters ξ, αu and ζu have been estimated on the
exceedances of this threshold. Our objective is to parameterize equations F (x) and10

F0(x) by imposing a perfect overlapping with Fu(x) for any x>u, as depicted in Fig. 1
and formalized by the equations derived in Sect. 3.1. In doing it let us assume that
also F0(x) is a GPD with threshold u=0 and parameters α0 and ξ, and that it can be
expressed by Eq. (6) with u=0.

Substituting F0(x) and Fu(x) from Eq. (6) into Eq. (3) we can easily obtain:15

α0 =αu−ξuu ∀ξu (8)

where the subscript u is used to label parameter estimates (including ξ) on the basis
of the threshold used.

Thus if a suitable threshold has been selected (so that the excesses can be reli-
ably represented by a GPD), by virtue of Eq. (8) the α0 reparameterization should be20

invariant for any higher threshold (even if αu changes with u). As discussed in the
introduction similar equations have been proposed and used to reparameterize the
scale parameter αu∗ corresponding to the optimum threshold u∗ by using αu estimates
obtained for thresholds u>u∗ (see e.g., Madsen et al., 1997b; Begueŕıa, 2005). Nev-
ertheless in such approaches αu∗ estimates will depend not only on the local climatic25

conditions but also on the local optimum threshold u∗, which may be different from site
to site. In contrast, results from Eq. (8) do not depend on the on-site optimum thresh-
old. Finally we highlight that Eq. (8) can also be derived by the linkage between GPD
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and GEV distribution in the asymptotic limit (see e.g., Coles, 2001, p. 83), but here it
was more simply obtained without this assumption.

Computing now F0(u) from Eq. (6), i.e. putting first u=0 and then computing for x=u,
substituting F0(u) in Eq. (4), and (optionally) using Eq. (8) we obtain:

ζ0 =


ζu

(
1+ξu

u
α0

)1/ξ

= ζu

(
1−ξu

u
αu

)−1/ξ

ξu 6=0

ζuexp
u
α0

= ζuexp
u
αu

ξu =0

(9)5

As Eq. (8), this last equation states that the ζ0 reparameterization is threshold-invariant,
although the probability ζu of exceeding u obviously decreases as u increases.

Finally, substituting F0(x) from Eq. (6) into Eq. (1) and using the parameterizations
from Eqs. (8) and (9), we obtain a three-parameter distribution function to describe
rainy and not rainy records:10

F (x)=


1−ζ0

(
1+ξ

x
α0

)−1/ξ

ξ 6=0

1−ζ0exp
(
− x
α0

)
ξ=0

x≥0 (10)

Assuming x as an i.i.d. random variable, the distribution function of annual
maxima G(x) is related to F (x) and the yearly return period T by the relation
G(x)=F (x)n=1−1/T , where n=365.25 is the average number of days in a year. Thus
obtaining an expression for the T -year return period quantile is straightforward:15

xT =



α0

ξ


1−

(
1− 1

T

)1/n

ζ0

−ξ

−1

 ξ 6=0

−α0 ln

1−
(
1− 1

T

)1/n

ζ0

 ξ=0

(11)
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We remark two important properties of Eq. (10). First, it perfectly overlaps any GPD
fitted on the exceedances of thresholds larger than the optimum one u∗: the only minor
drawback is that there can be small departures from records smaller than u∗, but this
does not affect extreme quantile estimations by Eq. (11). Second, the three parameters
in Eq. (10) do not depend on the threshold used for GPD fitting, but only on the local5

climatic features: this properties is particularly helpful to investigate the spatial pattern
of rainfall signature in regional analyses.

4 The Multiple Threshold Method

By virtue of the GPD properties and of the derivations presented in Sect. 3, if a sample
can be reasonably considered drawn from a GPD with threshold u∗ and shape pa-10

rameters ξ, then for any other threshold u>u∗ we should expect invariance not only
for the estimates of the shape parameter ξ, but also for the reparameterizations α0
and ζ0 provided by Eqs. (8) and (9). This concept is used in the development of the
Multiple Threshold Method (MTM) which is based on the parameter estimates within
a range of thresholds u>u∗ and provides robust GPD fitting regardless the data reso-15

lution or rounding off. Concerning the choice of the optimum threshold u∗ we remark
that it should be selected large enough to reliably consider the distribution of the ex-
ceedances closely approximated by a GPD, but low enough to keep small the estima-
tion variance.

For the sake of clarity, we first present in Sect. 4.1 the MTM with an application20

on a time series in our database which was correctly recorded at 0.2 mm resolution,
deferring the problems related to data discretization and MTM application on roughly
rounded-off records to Sect. 4.2.
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4.1 MTM rationale

To show how the threshold-invariant properties of the parameterizations derived in
Sect. 3 hold for rainfall time series and to better convey the MTM rationale, in Figs. 2
and 3 we present the results obtained on a 58-yr long time series recorded by a tipping-
bucket rain gauge at 0.2 mm resolution.5

We first obtained the ξ and αu estimates on the excesses of a range of thresholds
u by maximizing the likelihood function in Grimshaw (1993), and the ζu estimates by
Eq. (7). Then we used Eqs. (8) and (9) to calculate the corresponding reparameteri-
zations of α0 and ζ0 for each threshold u. The first three plots from the top of Fig. 2
show these estimates ξ, α0 and ζ0 as a function of thresholds u ranging from 0 to10

20 mm. We can clearly observe a stabilization of the ξ estimates for thresholds larger
than u∗≈3 mm, indicating that the tail behavior becomes stable and thus u∗ can be
considered an optimal threshold. A similar behavior can be observed for the estimates
of α0 and ζ0 which become stable for u>u∗, as expected by the theoretical derivations
presented in previous Sect. 3. Finally, for thresholds larger than about 10 mm, we can15

observe all the estimates starting to visibly fluctuate, and moreover the deviations of
the ξ parameter seem to be amplified in the α0 and ζ0 estimates. We also remark that
the increasing variability of all the estimates should be expected since, despite thresh-
olds between 10 and 20 mm may be considered modest, the corresponding number of
exceedances becomes very small, as shown in the last plot of Fig. 2.20

Although the rigorous assessment of the optimum threshold u∗ goes beyond the
main scope of this paper, we performed the same analysis on the other time series
that were correctly recorded with 0.2 mm discretization. The results were very similar
to those presented in Fig. 2, revealing the the optimal threshold u∗ in our dataset is
always smaller than 5 mm and generally around 3–4 mm.25

Starting from these observations and from the results on roughly discretized time
series presented in Fig. 4 and discussed later, the main idea of the Multiple Threshold
Method (MTM) is to estimate the ξ, α0 and ζ0 parameters in Eq. (10) using a convenient
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statistic of the estimates obtained on a range of thresholds. As a convenient statistic
we suggest the adoption of the median value since it is quite robust to the asymmetric
distribution of the estimates obtained for different thresholds on discretized samples
(see e.g., Fig. 4). Concerning the range of thresholds to be adopted, we calculate
the median of the estimates obtained for thresholds ranging from 2.5 to 12.5 mm: for5

our time series this represents a trade-off among the need to (i) have a range large
enough to filter out and smooth the departures artificially driven by large roundings
(as those shown in the left column of Fig. 4), (ii) hold enough exceedances in order
to keep small the estimation variance, and (iii) perform almost all the estimates using
thresholds u>u∗.10

The horizontal lines of the first three plots in Fig. 2 show preliminary MTM results,
i.e. the median of the ξ, α0 and ζ0 estimates on a range of thresholds u from 2.5 to
12.5 mm. We can observe how the parameter estimates within the adopted range of
thresholds are very close to the lines representing the MTM estimates. The departures
on the left hand side indicate that the exceedances of thresholds smaller than 3 mm are15

not yet in the domain of attraction of the GPD, while the departures observed for the
larger thresholds are due, as already discussed, to the increasing estimation variance
associated to the small number of exceedances.

Although results in the first three plots in Fig. 2 can be considered already satisfac-
tory, we suggest to further improve the behavior of our estimates by applying the MTM20

through the following hierarchical steps, where the final MTM estimates will be denoted
as ξM, αM

0 , and ζM
0 and will be used to parameterize Eq. (10).

Step 1: ξM estimate. We first obtain the MTM estimate ξM of the shape parameter
as the median of the ξ estimates on the suggested range of thresholds as shown in
first plot of Fig. 2.25

Step 2: αM
0 estimate. In order to filter out the variability of the α0 estimates driven

by the fluctuations of ξ we estimate again the αu values conditioned to ξM estimate
obtained at step 1 (i.e. we maximize the likelihood function with ξ=ξM known) and use
again the reparameterization in Eq. (8) with the new αu estimates and ξ=ξM constant.
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Results from Eq. (8) are now denoted as αC
0 to remark that they are conditioned to ξM

and are shown in the fourth plot of Fig. 2: comparing with the second plot of the same
figure we can observe a minor dispersion of the new αC

0 estimates. Finally, the MTM

estimate αM
0 of the scale parameter is the median of the new αC

0 estimates within the
range of thresholds.5

Step 3: ζM
0 estimate. In a similar way we can reduce the variability of ζ0 by introducing

the ζu estimates provided by Eq. (7) together the MTM estimates ξM and αM
0 (obtained

at step 1 and 2) into Eq. (9). Results from Eq. (9) are now denoted as ζC0 to remark

again that they are conditioned to ξM and αM
0 and are shown in the fifth plot of Fig. 2

which displays again a reduction of variability with respect the unconditioned estimates10

in the third plot of the same figure. Finally, the MTM estimate ζM
0 is the median of the

new ζC0 estimates within the range of thresholds.

The described procedure gives as results the MTM estimates ξM=0.15,
αM

0 =4.95 mm, and ζM
0 =0.20 that are used to parameterize Eq. (10) for the analyzed

time series. In Fig. 3 (top) we can observe how the empirical survival function of our15

sample can be reliably represented by Eq. (10) also for values much larger than the
range of thresholds (2.5–12.5 mm) used for fitting. Figure 3 (bottom) provides a zoom
of the empirical CDF to show departures from very small rainfall values, consistently
with results of parameter estimates presented in previous Fig. 2. However, letting the
optimal threshold u∗≈3 mm, with the exception of the records x ∈ (0,u∗), Eq. (10) allows20

modeling in a simple way (i.e. with only three threshold-invariant parameters) the whole
rainfall marginal distribution and gives a very good representation of the higher records
providing a reliable insight on the extreme behavior.

4.2 MTM on roughly rounded-off records

We want now to discuss the MTM application on time series with significant percent-25

ages of records rounded off at large discretizations. Deidda (2007) analyzed the
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database described in Sect. 2 and found that many daily rainfall time series collected
by non-recording rain gauges contain anomalous percentages of records discretized at
multiples of 0.1, 0.2, 0.5, 1 and 5 mm. Columns from left to right in Fig. 4 show the re-
sults of the MTM on three of these time series with different discretizations and shape
parameter values: the first time series contains more than 30% of records anoma-5

lously discretized at multiples of 5 mm and is characterized by ξ≈0; the second one
has about 70% of records discretized at 1 mm and ξ≈0.25; the third one counts about
35% of values at 1 mm resolution and ξ≈0.35.

As in Fig. 2, the first three rows of subplots in Fig. 4 show the ξ, α0, and ζ0 estimates
as a function of the threshold u. If we compare these results with those presented in10

Fig. 2 we can observe an increased dispersion and a wide spread of all the estimates,
and we can also observe the repetition of some patterns at multiple intervals of the
discretizations of the records. The fourth and fifth rows show the conditioned estimates
αC

0 and ζC0 : we can observe a stabilization of these estimates, although the signatures

of roundings are still present. As previously described, the MTM estimates ξM, αM
0 , and15

ζM
0 are obtained as the median of ξ, αC

0 , and ζC0 values (displayed in the first, fourth
and fifth rows of subplots in Fig. 4) within the range of thresholds between 2.5 and
12.5 mm.

Analyzing the results of Fig. 4 it should be now more clear the rationale of our sug-
gestion to apply the MTM in a range of thresholds between 2.5 and 12.5 mm. Indeed,20

since we often observed anomalous percentage of roundings with 5 mm resolution, the
adopted range corresponds to joining two intervals of thresholds of size 5 mm and cen-
tered on 5 mm and 10 mm, where we observe the jumps of the estimates. At the same
time applying the median operator to the estimates on the proposed range of thresh-
olds should guarantee that the MTM estimates are not affected by errors due to an25

imprecise location of the optimal threshold u∗. Indeed, we can also notice how deter-
mining the optimal threshold u∗ by looking for the starting point of constant parameter
estimates is here quite difficult, if not impossible!

4972

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/7/4957/2010/hessd-7-4957-2010-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/7/4957/2010/hessd-7-4957-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
7, 4957–4994, 2010

A multiple threshold
method for fitting the

generalized Pareto
distribution

R. Deidda

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Finally the last row of Fig. 4 compares the empirical survival functions of the three
time series with Eq. (10) parameterized by the MTM estimates ξM, αM

0 , and ζM
0 . As

already noticed for Fig. 3 we can observe again the good performances of the MTM in
capturing the tail of our distributions, despite the roundings. Thus, regardless the ex-
ponential or heavy tailed shape behaviour, the proposed approach results very robust5

also for fitting time series with significant percentages of roughly rounded-off records.

5 MTM performances

We explore here the performances of the MTM on Monte Carlo samples drawn by
GPDs with different parameters and different discretizations: specifically, we compare
MTM results with those of a standard fit with a single threshold. In order to evaluate the10

performances on synthetic samples that can be considered representative of our daily
rainfall records, we preliminarily evaluated the GPD parameters on the longest time
series belonging to the dataset described in Sect. 2: namely, 217 time series with more
than 40 complete years of records. With this aim, the MTM presented in Sect. 4 was
first applied on these time series with a range of thresholds between 2.5 and 12.5 mm15

and using three different GPD parameters estimators: the Simple Moments (SM), the
Probability Weighted Moments (PWM), and the Maximum Likelihood (ML) methods
based on the expression reported in Hosking and Wallis (1987), Stedinger et al. (1993),
and Grimshaw (1993). The MTM estimates of ξM and αM

0 parameters obtained for
each station using the three estimators are shown in the scatterplot of Fig. 5. We can20

observe how the ξM estimates derived by the SM method are never larger than 0.35:
this can be explained by the bias of the estimator related to the divergence of ordinary
moments on heavy tailed distributions (Hosking and Wallis, 1987), thus we discarded
the SM approach for our analysis. We can also observe that the ξM estimates by ML
are slightly more spread than the PWM ones. Although not deeply checked, the largest25

ML estimates can be due to the more sensitivity of the ML method to the presence of
outliers or to convergence problems as argued by Hosking and Wallis (1987). We also
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visually inspected the CDFs of the few time series with negative shape parameter and
found that they can be reliably described by exponential distributions (ξ=0).

On the basis of this preliminary analysis we decided to explore the MTM perfor-
mances with the ML estimator on Monte Carlo samples generated by Eq. (10) with
the following 7 couples (ξ, α0) of GPD parameters (displayed in Fig. 5 with square5

symbols): (0, 9), (0, 12), (0.2, 6), (0.2, 9), (0.2, 12), (0.4, 6), (0.4, 9).
The 90% of the MTM ζM

0 estimates resulted in a range between 0.15 and 0.25 with
a median value very close to 0.20, while the lengths of the considered time series
range between 40 and 60 yr. Thus, for the sake of simplicity, we decided to generate
all synthetic daily rainfall time series by Eq. (10) using only the value ζ0=0.20 and10

a length of 50 yr, since choosing different values has the only effect to slightly change
the number of strictly positive records.

To evaluate the MTM performances on records with different discretizations we con-
sidered the following groups of tests:

Test A: all records are discretized with 0.2 mm resolution. This corresponds to the15

standard resolution of most tipping-bucket rain gauges in Europe.
Test B: all records are discretized with 1 mm resolution, as most time series in our

database contain large amounts of records discretized at multiples of 1 mm.
Test C: 30% of records are discretized with 5 mm resolution, 40% are discretized

with 1 mm resolution, while the remaining 30% are correctly discretized at 0.2 mm.20

This is the case of a large number of time series in which we detected a mixture of
discretizations up to 5 mm.
In summary we generated 5000 samples of 50-yr synthetic daily rainfall time series
from Eq. (10) with probability of rainfall ζ0=0.20 and (ξ, α0) parameters taking the
values of the 7 couples reported above. Each sample was then discretized according25

to the three group of tests.
On each sample we estimated the ξ, α0, and ζ0 parameters with two different ap-

proaches. In the first approach the ξ and α0 values are simply estimated on all strictly
positive records, adopting thus a single threshold u=0, while ζ0 is estimated as the

4974

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/7/4957/2010/hessd-7-4957-2010-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/7/4957/2010/hessd-7-4957-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
7, 4957–4994, 2010

A multiple threshold
method for fitting the

generalized Pareto
distribution

R. Deidda

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

ratio between the number of all strictly positive records and the sample size: this will
be referred as “standard fit”. In the second approach the ξ, α0, and ζ0 parameters are
provided by the MTM on a range of thresholds between 2.5 and 12.5 mm as described
in Sect. 4: this approach will be referred as “MTM fit”. Finally, parameterizing Eq. (11)
with ξ, α0, and ζ0 parameters obtained by the two fitting approaches we estimated also5

the 50-yr return period quantile x50 from each sample. In both approaches estimates
are always obtained by maximizing the likelihood function.

Examples of MTM application on 50-yr synthetic time series generated by Eq. (10)
with parameters ξ=0.2, α0=9 mm, and ζ0=0.2 are shown in Fig. 6: each column re-
ports the results for a sample extracted from one the groups of tests A, B, and C. As10

in previous Figs. 2 and 4, the first three rows of subplots show the unconditioned es-
timates of ξ, α0, and ζ0 as a function of the threshold, while the fourth and fifth rows
show the reduction of the spread for conditioned estimates αC

0 , and ζC0 , but again the
signature of the roundings is still visible. Comparing these results with those in the pre-
vious Fig. 4, we can observe a strong similarity with the patterns obtained for historical15

daily rainfall time series. Moreover, in the first column of subplots of Fig. 6 (time series
correctly discretized with 0.2 mm resolution) we can again observe the increasing dis-
persion of the unconditioned estimates of ξ, α0, and ζ0 for thresholds larger than the
MTM range. As already discussed for Fig. 2, this dispersion can be related to the in-
creasing estimation variance as the number of excesses decreases. It is worth noticing20

on the second and third columns of subplots of Fig. 6 how the increasing dispersion
is hidden by the effects of roundings. Finally, the last row of subplots in Fig. 6 shows
a comparisons between the empirical survival functions and Eq. (10) parameterized
with ξM, αM

0 , and ζM
0 MTM estimates: again we can visually appreciate the good results

of the proposed approach and the reliable fitting to the highest quantiles.25

Figure 7 shows the relative frequency distributions of ξ, α0, ζ0, and x50 estimates
provided by the standard fit (left column) and the MTM fit (right column) on 5000 Monte
Carlo samples discretized according to tests A, B, and C. The vertical lines in each sub-
plot show the parameter values used for generations (ξ=0.2, α0=9 mm, and ζ0=0.2)
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and the expected 50-yr return period quantile x50=187 mm. A visual analysis of the
subplots in the left column of Fig. 7 gives us a clear picture of the bias affecting the
standard fit estimates: the larger the discretization, the higher the bias. On the other
hand, looking at the corresponding subplots in the right column we can observe how
the MTM is not affected by these bias problems: the only visible drawback is a slight5

increase of the estimation variance related to the lower number of exceedances used
for MTM estimations.

Figures presented and discussed till now give us a qualitative but quite clear idea
of MTM supremacy on the standard fit. Nevertheless, in order to provide an objective
evaluation of the MTM performances, we evaluated bias and RMSE of the two fitting10

approaches for each group of rounding-off tests and GPD parameters:

bias(θ̂)=E
[
θ̂−θ

]
RMSE(θ̂)=

√
E
[
(θ̂−θ)2

] (12)

where θ̂ is an estimator (provided by the standard or the MTM approach) of the pa-
rameter θ. In our case the θ parameter can be ξ, α0, ζ0, or the 50-yr return period
quantile x50. For each parameter, results in term of bias and RMSE are presented in15

Tables 1, 2, 3, and 4, respectively. We do not show results in term of estimation vari-
ance, since it can be easily obtained as var(θ̂)= RMSE(θ̂)2−bias(θ̂)2. But we would
like to highlight that the estimation variance of the standard fit (on all strictly positive
records) is expected to be lower than the one of the MTM fit, since var(θ̂) of ML estima-
tors is asymptotically inversely proportional to the sample size: as shown in the sixth20

row of subplots in Fig. 6, the number of exceedances of the MTM range of thresholds
varies between about the 75% and the 25% of all strictly positive records.

An overall look at the tables clearly reveals how performances can drastically change
depending on the resolution of the sample (test A, B, and C) and also on the shape
and scale parameters values. However some general behaviors can be identified.25
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The top part of each table shows the bias for each parameter: we can observe a clear
supremacy of the MTM against the standard fit for all the considered discretizations and
for all the couples (ξ,α0) of GPD parameters. The qualitative conclusions from Fig. 7
are here objectively confirmed also for the other couples of GDP parameters: the MTM
is able to correct most part of the bias affecting the standard fit.5

The bottom part of the tables reports the evaluation of performances in term of
RMSE. We can still observe a clear supremacy of the MTM for samples discretized
according to test B and C. For test B, where samples are rounded off at 1 mm resolu-
tion, the RMSE for the standard fit is about 2–3 times larger than the one for the MTM
fit, while for test C (roundings up to 5 mm) the ratio of RMSEs of the two fitting ap-10

proaches increases to about 3–4. Thus there is no doubt on the advantage of applying
the MTM approach on samples with records rounded off at 1 mm or higher resolutions.
Moreover, it is worthwhile noticing that in the case of test C, where 30% of records
were rounded off at 5 mm resolution, the RMSE of the standard fit assumes unaccept-
able values if compared to the range of GPD parameters estimated on our database15

(Fig. 5): e.g. the RMSE(ξ) is of order 0.1 while the range of estimates in our database
is between 0 and 0.4, similar arguments hold also for α0 since RMSE(α0)≈2 mm while
α0 estimates range from 6 to 12 mm.

Now, let us draw some considerations on the RMSE for test A, where all records
were correctly discretized at resolution 0.2 mm. Although this is the standard resolu-20

tion of most tipping-bucket rain gauges in Europe, results for this test can be considered
representative also for many tipping-bucket rain gauges in US where the standard res-
olution is often 0.254 mm, very close to our choice. Looking throughout the tables, we
can observe for test A that the RMSE for all considered parameters is slightly better
for the standard fit (with a single threshold u=0) rather than for the MTM one: as al-25

ready discussed this result is obviously expected since the standard fit is performed
on all strictly positive records while the MTM is based on estimates coming from left-
censored samples with size ranging from about the 25% to 75% of all strictly positive
data (see e.g. the plots in the sixth row of Fig. 6), thus the light worsening of the MTM
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RMSE with respects the standard fit cannot be attribute to a deficiency of the MTM
itself, but to the increasing estimation variance as the the sample size decreases. In
order to support this argument, for test A we report in all the tables also the results
of the standard fit with a single threshold u=5 mm, which appears to be reasonable
for our time series since we found an optimum threshold around u∗≈3–4 mm for daily5

rainfall data in our database: we can observe how the RMSE for the standard fit with
u=5 mm becomes the same as the one for the MTM fit, despite the latter is penalized
by the higher estimation variance due to the smaller number of exceedances.

At the light of these results we strongly suggest the use of the MTM not only on
roughly rounded-off data, but also on correctly discretized records as in test A for the10

following reasons. First, when we increase the threshold to a reliable value u∗ for the
standard fit, the RMSEs become the same for the two approaches, but the MTM does
not suffer of bias problems. Second, RMSE of MTM is anyway acceptable if compared
to the range of GPD parameters values estimated on our database (Fig. 5). Third, the
MTM does not require an exact determination of the optimum threshold, but a visual15

analysis as we made in our dataset can suffice: the median value on the wide range
of thresholds is robust even in the case that a small number of estimates are obtained
on thresholds smaller than the optimum one u∗ for each analyzed station; on the other
hand, applying the standard fit on the excesses of a wrong threshold u<u∗ will certainly
lead to a higher bias and consequently a higher RMSE (see e.g. the estimates for20

thresholds lower than 3 mm in Fig. 2).

6 Final remarks and conclusions

A special caution should always be taken when representing the distribution of rain-
fall records collected at daily or any other fixed time scale by dealing separately the
zero and not zero records and by fitting any distribution function on all strictly positive25

records: indeed the smallest values usually depart from the distribution of the bulk of
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the records and can introduce a bias in the parameter estimates (as shown in Fig. 2).
Thus, whatever distribution is candidate to describe daily rainfall, we need to choose
a proper threshold to reliably describe our sample by the fitted distribution.

Theoretical arguments suggest to model threshold exceedances by the generalized
Pareto distribution (GPD), moreover empirical evidences support this choice for rainfall5

records. Thus derivations and applications presented in this paper are focused on the
GPD, but many concepts are quite general and applicable to other distributions.

Although several methods to determine the optimum threshold to fit the GPD have
been proposed in the literature, a general consensus is not yet reached and proposed
methods can lead to different results. Moreover, the presence of roughly rounded-10

off records, as detected in many time series of our database, makes this task even
more difficult: selecting only those time series that were correctly discretized at 0.2 mm
resolution we found a stabilization of the shape parameter for thresholds larger than
3–4 mm. Thus we assumed an optimum threshold located around these values. Nev-
ertheless, should other values be more reliable in other regions, the methods here15

proposed can be anyhow applied on revised ranges of thresholds.
The GPD is usually fitted on rainfall time series (or other hydrological variables)

through the following steps: (i) identification of a single optimum threshold u∗ for each
time series with any numerical or graphical method; (ii) estimation of the probability of
threshold excesses, e.g. counting the number of exceedances; (iii) inference of GPD20

shape and scale parameters on the exceedances of the selected optimum threshold
with any parameter estimator. In order to represent and reproduce a time series, or to
estimate extreme quantiles, four parameters for each site should be determined: the
shape ξ and scale αu∗ parameters of the fitted GPD, the threshold u∗ and the probability
ζu∗ to observe exceedances of the threshold. Nevertheless, αu∗ and ζu∗ estimates are25

not the best indicators of climatological spatial patterns, because of their dependence
on the threshold u∗.

In this paper we provided equations to eliminate this dependence of parameters on
the threshold and to describe the rainfall distribution with the simple representation in
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Eq. (10), where only the three threshold-invariant parameters ξ, α0, and ζ0 are used. In
such a way, even if we are analyzing different stations where we observe a good fitting
of exceedances distributions with different values of the thresholds, once the fitting
has been completed we can forget the threshold values, and use Eq. (10) without
any explicit parameter dependence on the thresholds. This is a desired property for5

regional analyses since the three parameters ξ, α0, and ζ0 reflect only the climatic
signature.

Using this threshold-invariance property of the ξ, α0, and ζ0 parameters we devel-
oped the Multiple Threshold Method (MTM) which provides the three estimates as the
median values of reparameterizations over a proper range of thresholds. We have10

also shown how the MTM is particularly able to filter out the deviations from threshold-
invariance which are artificially driven by the presence of roughly rounded-off records.
Indeed, despite ξ, α0, and ζ0 reparameterizations are expected to be constant for
any threshold larger than the optimum one, the presence of rounded-off records leads
to fluctuations around the expected values, but the median operator is robust even in15

case of asymmetric fluctuations of the estimates, as found on historical time series with
roughly rounded-off records and on synthetic samples discretized at different resolu-
tions. The range of thresholds here adopted for the MTM is between 2.5 and 12.5 mm:
in our opinion this is the best trade-off between the need to have a range wide enough
to filter out fluctuations artificially driven by the roundings, but also small enough to20

have an acceptable estimation variance, and finally we are quite confident that most
of the thresholds are larger than the optimum one, at least in the database here ana-
lyzed. However, as already remarked, if in other regions there are evidences of different
optimum threshold values the MTM range of thresholds can be consequently revised.

The Monte Carlo method was systematically applied to evaluate and compare the25

performances of the MTM against the single-threshold standard fit in terms of bias
and RMSE, considering different discretizations, as well as different shape and scale
GPD parameters. Results of our analysis clearly prove the supremacy of the MTM
with respect to the sandard fit in case of roughly rounded-off records, while in the
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test devised for records discretized at 0.2 mm resolution (as most of EU tipping-bucket
rain gauges) the RMSE for the MTM resulted about the same as the standard fit with
a single threshold around u=5 mm, but MTM has the smallest bias. Thus in conclusion
the MTM performs always better than the standard single-threshold fit regardless the
record discretizations. Moreover, we strongly recommend the MTM also because the5

results provided by the median operator over a wide range of thresholds should not
be affected by small errors in the location of the optimum threshold, as it conversely
happens for the single-threshold standard fit.

All the analyses were performed with the ML, nevertheless the MTM can anyhow be
applied on the estimates provided by any other estimator.10
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Table 1. bias (top part of the table) and RMSE (bottom part) of ML ξ estimates obtained by
the standard fit with a single threshold u=0 and the MTM fit on a range of thresholds between
2.5 to 12.5 mm. Parameters are estimated from synthetic samples generated by Eq. (10) with
different couples of shape ξ and scale α0 GPD parameters and ζ0=0.2. Each sample is 50-
yr long and is discretized according to test A (0.2 mm resolution), B (1 mm resolution), and C
(mixing of resolutions up to 5 mm). For test A, results for the standard fit with a single threshold
u=5 mm are also presented.

bias of ξ
ξ 0 0 0.2 0.2 0.2 0.4 0.4
α0 9 12 6 9 12 6 9

Test A standard (u=0) −0.012 −0.009 −0.020 −0.014 −0.010 −0.023 −0.016
(∆=0.2 mm) standard (u=5) −0.013 −0.010 −0.018 −0.013 −0.010 −0.018 −0.014

MTM −0.002 −0.001 −0.001 −0.001 −0.001 −0.001 −0.002

Test B standard (u=0) −0.049 −0.038 −0.082 −0.058 −0.045 −0.094 −0.067
(∆=1.0 mm) MTM −0.005 −0.003 −0.006 −0.004 −0.003 −0.005 −0.004

Test C standard (u=0) −0.074 −0.059 −0.109 −0.085 −0.069 −0.121 −0.096
(∆=mixed) MTM −0.012 −0.008 −0.022 −0.012 −0.008 −0.019 −0.013

RMSE of ξ
ξ 0 0 0.2 0.2 0.2 0.4 0.4
α0 9 12 6 9 12 6 9

Test A standard (u=0) 0.020 0.019 0.028 0.024 0.022 0.033 0.028
(∆=0.2 mm) standard (u=5) 0.025 0.023 0.034 0.028 0.026 0.038 0.032

MTM 0.023 0.022 0.032 0.028 0.026 0.036 0.031

Test B standard (u=0) 0.052 0.041 0.084 0.061 0.049 0.096 0.071
(∆=1.0 mm) MTM 0.024 0.022 0.033 0.028 0.025 0.036 0.032

Test C standard (u=0) 0.076 0.061 0.110 0.087 0.072 0.123 0.098
(∆=mixed) MTM 0.026 0.023 0.039 0.029 0.027 0.040 0.033
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Table 2. Same as Table 1 but for α0 estimates.

bias of α0
ξ 0 0 0.2 0.2 0.2 0.4 0.4
α0 9 12 6 9 12 6 9

Test A standard (u=0) 0.21 0.21 0.24 0.25 0.25 0.29 0.29
(∆=0.2 mm) standard (u=5) 0.28 0.27 0.34 0.32 0.30 0.38 0.36

MTM 0.03 0.02 0.01 0.01 0.02 0.01 0.02

Test B standard (u=0) 0.97 0.98 1.15 1.17 1.17 1.35 1.36
(∆=1.0 mm) MTM 0.10 0.07 0.12 0.09 0.09 0.11 0.09

Test C standard (u=0) 1.60 1.64 1.74 1.88 1.96 1.99 2.16
(∆=mixed) MTM 0.27 0.21 0.42 0.28 0.23 0.40 0.31

RMSE of α0
ξ 0 0 0.2 0.2 0.2 0.4 0.4
α0 9 12 6 9 12 6 9

Test A standard (u=0) 0.30 0.35 0.29 0.34 0.40 0.33 0.38
(∆=0.2 mm) standard (u=5) 0.45 0.51 0.51 0.53 0.58 0.59 0.61

MTM 0.41 0.47 0.44 0.49 0.55 0.53 0.55

Test B standard (u=0) 1.00 1.02 1.16 1.19 1.21 1.36 1.39
(∆=1.0 mm) MTM 0.42 0.47 0.47 0.50 0.54 0.54 0.56

Test C standard (u=0) 1.61 1.66 1.75 1.90 1.98 2.00 2.18
(∆=mixed) MTM 0.49 0.51 0.62 0.56 0.60 0.66 0.64
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Table 3. Same as Table 1 but for ζ0 estimates.

bias of ζ0
ξ 0 0 0.2 0.2 0.2 0.4 0.4
α0 9 12 6 9 12 6 9

Test A standard (u=0) −0.002 −0.002 −0.003 −0.002 −0.002 −0.003 −0.002
(∆=0.2 mm) standard (u=5) −0.005 −0.003 −0.009 −0.005 −0.003 −0.008 −0.005

MTM −0.000 0.000 0.001 0.000 0.000 0.001 0.000

Test B standard (u=0) −0.011 −0.008 −0.016 −0.011 −0.008 −0.016 −0.011
(∆=1.0 mm) MTM −0.001 −0.001 −0.003 −0.001 −0.001 −0.002 −0.001

Test C standard (u=0) −0.019 −0.014 −0.026 −0.018 −0.014 −0.025 −0.018
(∆=mixed) MTM −0.004 −0.002 −0.010 −0.003 −0.002 −0.008 −0.003

RMSE of ζ0
ξ 0 0 0.2 0.2 0.2 0.4 0.4
α0 9 12 6 9 12 6 9

Test A standard (u=0) 0.004 0.003 0.004 0.004 0.003 0.004 0.004
(∆=0.2 mm) standard (u=5) 0.007 0.005 0.012 0.007 0.006 0.012 0.007

MTM 0.007 0.005 0.011 0.007 0.005 0.012 0.007

Test B standard (u=0) 0.011 0.009 0.016 0.011 0.009 0.016 0.011
(∆=1.0 mm) MTM 0.007 0.005 0.011 0.007 0.005 0.011 0.007

Test C standard (u=0) 0.019 0.015 0.026 0.018 0.014 0.025 0.018
(∆=mixed) MTM 0.008 0.005 0.015 0.008 0.006 0.013 0.008
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Table 4. Same as Table 1 but for x50 extreme quantile estimates corresponding to a 50-yr
return period.

bias of xT
ξ 0 0 0.2 0.2 0.2 0.4 0.4
α0 9 12 6 9 12 6 9
qT 74 98 124 187 249 382 574

Test A standard (u=0) −2 −2 −7 −7 −7 −31 −31
(∆=0.2 mm) standard (u=5) −1 −1 −4 −5 −5 −14 −18

MTM −0 −0 0 1 0 2 2

Test B standard (u=0) −6 −7 −25 −28 −30 −110 −126
(∆=1.0 mm) MTM −1 −0 −1 −1 −1 −2 −2

Test C standard (u=0) −8 −10 −30 −38 −43 −127 −163
(∆=mixed) MTM −1 −1 −5 −5 −4 −15 −19

RMSE of xT
ξ 0 0 0.2 0.2 0.2 0.4 0.4
α0 9 12 6 9 12 6 9
qT 74 98 124 187 249 382 574

Test A standard (u=0) 4 5 12 17 22 53 74
(∆=0.2 mm) standard (u=5) 4 6 13 18 24 56 80

MTM 5 6 13 19 25 58 84

Test B standard (u=0) 7 8 26 31 35 114 136
(∆=1.0 mm) MTM 4 6 14 19 24 58 84

Test C standard (u=0) 9 11 31 40 46 130 170
(∆=mixed) MTM 5 6 14 19 25 58 81
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Fig. 1. The sketch depicts some relations among the cumulative distribution functions (CDFs)
F (x)=Pr{X≤x|X≥0}, F0(x)=Pr{X≤x|X>0}, and Fu(x)=Pr{X≤x|X>u}, which are used in the
text to determine the constraints for overlapping of all the CDFs for any x above the threshold
u. Cartesian axes of F (x) are drawn with a thin line and characteristic values are reported
on the left side, while the axes of F0(x) and Fu(x) are drawn with dashed and solid thick lines,
respectively, with values reported on the right side.
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Fig. 2. Example of MTM application on a daily rainfall time series collected by a tipping-bucket rain gauge with
0.2 mm resolution. The first plot from top displays the ξ estimates as the threshold u ranges from 0 to 20 mm: the ξM

MTM estimate is the median value (horizontal line) within the range of thresholds between 2.5 and 12.5 mm suggested
for practical applications. Similarly, the second and third plots display the unconditioned α0 and ζ0 estimates provided
by Eqs. (8) and (9) as a function of u. In the fourth plot the αM

0 MTM estimate is obtained as the median value of

the reparameterized αC
0 estimates conditioned to the ξM MTM estimate, while in the fifth plot the ζM

0 MTM estimate is

obtained by the ζC0 estimates conditioned to both ξM and αM
0 MTM estimates. The sixth plot shows the sizes of the

records exceeding the thresholds u. The starting point of stabilization of all estimates suggests u∗≈3 mm as optimum
threshold.
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Fig. 3. These figures display the good GPD fitting obtained by MTM application showed in
Fig. 2. The top plot shows the empirical survival function (circles) and Eq. (10) parameterized
with MTM estimates (line): we can observe how the fitting can reliably capture the highest
records, despite the MTM was applied with a moderate range of thresholds up to 12.5 mm. The
bottom plot shows a zoom of the empirical CDF and the MTM-GPD fit with the same symbols:
we can observe again a good fitting, except for very small records below the optimum threshold
u∗≈3 mm detected in previous Fig. 2.
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Fig. 4. Other examples of application of the MTM estimator as in Fig. 2, but here columns show
the results on time series containing anomalous percentages of roughly rounded-off records.
The selection of the time series was made to give examples of MTM working with different
roundings (left column shows results for a sample with many records discretized at 5 mm,
the other ones for samples containing many roundings at 1 mm) and different values of the
shape parameter (from left to right ξ≈0,0.25,0.35). Again, comparing the fourth raw of subplots
against the second one, and the fifth one against the third one we can observe the benefit of
hierarchical MTM application. Finally the last row compares the empirical survival function
(circles) with Eq. (10) parameterized with ξM, αM

0 and ζM
0 MTM estimates (line) for each time

series.
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Fig. 5. The scatterplot displays the couples of (ξM,αM
0 ) MTM estimates of GPD parameters for

the 217 daily rainfall time series more than 40-yr long collected by the Sardinian Hydrological
Survey (Italy). Parameters estimates were obtained by applying the MTM within a range of
thresholds between 2.5 and 12.5 mm: plus signs, circles, and diamonds refer to estimates
based on maximum likelihood (ML), probability weighted moments (PWM) and simple moments
(SM), respectively. Finally the seven couples of GPD parameters used in Sect. 5 to explore the
performances of the MTM on Monte Carlo samples are drawn with square symbols.
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Fig. 6. Same as Fig. 4, but here the MTM is applied on three synthetic samples generated by
Eq. (10) and discretized according to the rounding rules of test A (0.2 mm resolution), B (1 mm
resolution), and C (mixing of resolutions up to 5 mm): results of each test are shown in columns
from left to right, respectively. The sixth row of subplots shows now the percentage of records
exceeding each threshold u with respect the number of strictly positive records.
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Fig. 7. Relative frequency distributions of ξ, α0 and ζ0 and corresponding 50-yr quantiles on
5000 GPD random samples discretized according to test A (resolution ∆=0.2 mm, dotted lines),
B (∆=1 mm, dashed lines), and C (mixing of resolutions up to ∆=5 mm, solid lines). Results
from the standard fit method with a single threshold u=0 (all strictly positive records are used)
and from the MTM applied in a range of thresholds between 2.5 mm and 12.5 mm are shown
in the left and right column, respectively. From top to bottom, the plots display results for ξ, α,
ζ0 and 50-yr quantile estimates. Vertical thick solid lines show the parameters of Eq. (10) used
for Monte Carlo simulations and the expected quantile.
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